How deals with discrete data for the reduction of simulation models using neural network
نویسندگان
چکیده
Simulation is useful for the evaluation of a Master Production/distribution Schedule (MPS). Also, the goal of this paper is the study of the design of a simulation model by reducing its complexity. According to theory of constraints, we want to build reduced models composed exclusively by bottlenecks and a neural network. Particularly a multilayer perceptron, is used. The structure of the network is determined by using a pruning procedure. This work focuses on the impact of discrete data on the results and compares different approaches to deal with these data. This approach is applied to sawmill internal supply chain.
منابع مشابه
Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate
Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...
متن کاملSimulation of groundwater quality parameters using ANN and ANN+PSO models (Case study: Ramhormoz Plain)
One of the main aims of water resource planners and managers is to estimate and predict the parameters of groundwater quality so that they can make managerial decisions. In this regard, there have many models developed, proposing better management in order to maintain water quality. Most of these models require input parameters that are either hardly available or time-consuming and expensive to...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملComparison of Efficiency for Hydrological Models (AWBM & SimHyd) and Neural Network (MLP & RBF) in Rainfall–Runoff Simulation (Case study: Bar Aryeh Watershed -Neyshabur)
For suitable programming and management of water resources, access to perfect information from the discharge at the watershed outlet is essential. In most watersheds, the hydrometric station is not available; then, different models are used to simulate the discharge within watersheds without data. The selection of preferred model for rainfall- runoff simulation depends to the purpose of modelin...
متن کاملSimulation of groundwater quality parameters using ANN and ANN+PSO models (Case study: Ramhormoz Plain)
One of the main aims of water resource planners and managers is to estimate and predict the parameters of groundwater quality so that they can make managerial decisions. In this regard, there have many models developed, proposing better management in order to maintain water quality. Most of these models require input parameters that are either hardly available or time-consuming and expensive to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0906.1900 شماره
صفحات -
تاریخ انتشار 2009